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1,2, Dorina Rákóczi Megyeriné1,
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Abstract

The postsynaptic density (PSD) is a dense protein network playing a key role in information

processing during learning and memory, and is also indicated in a number of neurological

disorders. Efforts to characterize its detailed molecular organization are encumbered by the

large variability of the abundance of its constituent proteins both spatially, in different brain

areas, and temporally, during development, circadian rhythm, and also in response to vari-

ous stimuli. In this study we ran large-scale stochastic simulations of protein binding events

to predict the presence and distribution of PSD complexes. We simulated the interactions of

seven major PSD proteins (NMDAR, AMPAR, PSD-95, SynGAP, GKAP, Shank3, Homer1)

based on previously published, experimentally determined protein abundance data from 22

different brain areas and 42 patients (altogether 524 different simulations). Our results dem-

onstrate that the relative ratio of the emerging protein complexes can be sensitive to even

subtle changes in protein abundances and thus explicit simulations are invaluable to under-

stand the relationships between protein availability and complex formation. Our observa-

tions are compatible with a scenario where larger supercomplexes are formed from

available smaller binary and ternary associations of PSD proteins. Specifically, Homer1 and

Shank3 self-association reactions substantially promote the emergence of very large protein

complexes. The described simulations represent a first approximation to assess PSD com-

plex abundance, and as such, use significant simplifications. Therefore, their direct biologi-

cal relevance might be limited but we believe that the major qualitative findings can

contribute to the understanding of the molecular features of the postsynapse.

Author summary

Chemical and electrical synapses connect neurons in the brain. In chemical synapses the

information is sent via molecules from one neuron (presynaptic one) to the other neuron

(postsynaptic one). The messenger molecule called neurotransmitter is released from the

presynaptic neuron’s active zone and binds to receptor molecules sitting on the
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postsynaptic neuron’s cell surface. This part of the postsynaptic neuron is the dendrite.

Inside the dendrite there is an electron dense region full of proteins binding to each other

forming large protein complexes. These complexes make sure that the receptor molecules

are on the right place usually in front of the active zone. The protein dense region of the

postsynaptic cell in the dendrites is called the postsynaptic density. We have performed

extensive simulations on the formation of postsynaptic protein complexes using a well-

defined set of proteins and a large number of publicly available input data sets on protein

abundance. We used a simulator implementing the Gillespie algorithm to simulate bind-

ing and unbinding events proteins. We found that the relationship between single protein

and protein complex abundances can be non-trivial, since similar complex distributions

can emerge from distinct relative protein abundances and quite different protein com-

plexes can be formed from almost similar initial protein abundances. Our results are com-

patible with the idea that the association-dissociation of smaller subcomplexes lead to the

formation of large supercomplexes. The emergence of supercomplexes is largely facilitated

by the self-association of Homer1 and Shank3 proteins. Our results are qualitatively in

agreement with the formation of the experimentally observed ‘nanodomains’ in the post-

synaptic density.

Introduction

Complexity of the human brain is often attributed to the diversity of the neuronal network.

However, there is growing experimental evidence showing that individual synapses are highly

diverse in terms of the relative abundance of their constituent proteins [1]. These observations

have led to the formulation of the synaptomic theory [2] that emphasises the genetic back-

ground and experience-dependent changes in the molecular composition of synapses. Notably,

identification of the pre- and postsynaptic proteomes is still ongoing with the postsynaptic one

estimated to be nearer to saturation [3]. The postsynaptic density (PSD) is an intricate network

of proteins located at the postsynaptic membrane and is responsible for signal processing. Due

to its complexity, the structure of the PSD is still elusive as a whole. Understanding the organi-

zation of the protein network is key to describe physiological and pathological molecular pro-

cesses underlying learning, memory and behavior.

As demonstrated recently, network-based analysis of the synaptic proteome is a powerful

tool and can suggest novel associations between diseases [3]. To get a deeper understanding

into the actual mechanism of the PSD, we need to move toward explicit modeling of the pro-

tein complexes formed. Our recent sequence analysis [4] suggests that PSD proteins are partic-

ularly enriched in domains and regions mediating protein-protein interactions, resulting in a

high diversity of possible interactions. Thus, many different complexes and networks can be

built from the very same elements depending on their abundance and availability. This view is

consistent with the observations that different sets of PSD proteins are capable of forming

phase-separated condensates [5, 6] In vivo investigations indicate the presence of supercom-

plexes and nanodomains involved in the clustering of membrane receptors [7, 8]. The forma-

tion of these nanodomains is also dictated by the expression pattern of specific scaffold

proteins [7].

While knock-out experiments can provide valuable information on the role of a given PSD

protein at the level of the full brain/organism, like the contribution of PSD-95 to learning pro-

cesses [9], the mechanistic mode of action is only accessible when information about the func-

tional protein interactions and complexes is available. Due to the complexity of the PSD, this
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kind of data is not readily accessible. In general, experimental methods for global characteriza-

tion of protein complexes include combinations of gel electrophoresis and size exclusion chro-

matography with quantitative mass spectrometry, requiring thorough computational analysis

[10]. However, current experimental methods can only provide limited information about

such a complex and dynamic system like the postsynaptic density. In contrast, the abundance

of individual proteins can be measured under cellular conditions [11] and such data sets are

available [12]. Using the abundance data and the possible interactions between proteins, the

distribution of possible supramolecular complexes can be modeled using a systems biology

approach [13].

The Simulation based Complex Prediction (SiComPre) method has been proposed to pre-

dict compositions and abundances of protein complexes from the abundance of individual

proteins [14]. The method is based on the proteome-wide simulation of protein-protein inter-

actions by the Gillespie algorithm [15]. This algorithm has been widely used for the simulation

of various phenomena in the area of proteomics. Research groups using the Gillespie algorithm

address questions that are difficult or outright impossible to be answered experimentally with

the available methodologies. One of these questions is the case of co-translational protein fold-

ing predicting folding/unfolding and codon translation rates [16]. Stochasticity in gene expres-

sion regulatory pathways was also studied using the Gillespie algorithm [17], as well as protein

degradation by the proteasome [18].

SiComPre has been used to predict the formation of protein complexes in yeast and human

cells [14], and changes in the complexome upon drug treatments [19]. Based on the core ideas

behind SiComPre a novel whole cell simulation platform was developed, under the name of

Cytocast Cell Simulator (www.cytocast.com). This tool is available upon licensing or collabora-

tion with the developer company. The performance of SiComPre was analyzed in detail and it

was shown that it already overcomes several limitations of current methods predicting protein

complexes by protein-protein interactions and simulations [13].

In the present work we have used Cytocast Cell Simulator to model protein complex forma-

tion in the PSD using published mRNA abundance data in 22 different brain areas from a 42

human individuals, totaling 524 sets overall (not all areas are represented for all subjects) [20].

The data sets were obtained from brainspan.org (sets denoted RNA-Seq Gencode v10 summa-

rized to genes) and mRNA abundances have been converted to protein abundances by assum-

ing linear relationship between mRNA and protein amounts (see Materials and methods). We

have chosen this data source because it covers a large number of different brain areas and

patients, providing a highly versatile data set especially suitable for our investigations. It is

clear that our results cannot accurately capture in vivo PSD complexes because only a small

subset of PSD proteins and their interactions are considered. Nonetheless, we clearly demon-

strate the added value of protein complex modeling in the interpretation of protein abundance

data and the new biological insights it brings. A custom simulation with any combination of

the simulated protein abundances can be run through our server available at psdcomplexsim.

cytocast.com.

PSD proteins investigated

In this study we investigated a small subset of the most well-characterized PSD proteins. Evi-

dently, even the diversity of these can not be captured in our simulations as all of these proteins

have multiple isoforms with different partner binding properties, while we have considered

only the representative ones as defined in UniProt. Moreover, all these proteins have addi-

tional binding partners, some of which might not even be characterized yet. Nevertheless, we
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believe that this subset is a suitable candidate for a first simulation study as described here.

Below we briefly introduce the molecules selected for our protein complex simulations.

The NMDA receptor NMDAR was recognized as a coincidence detector by Donald Hebb

in 1949 as it has voltage-dependent Mg2+ binding sites blocking the cation channel in the

absence of depolarization. The receptor is one of the most important components affecting

Long Term Potentiation through its Ca2+ permeability and second messenger pathways [21].

It is also required for the effective elimination of unused synapses in the second phase of

synaptogenesis [22].

The AMPA receptor AMPAR is also an abundant ionotropic glutamate receptor having

both similar and different subunits compared to NMDAR, resulting in different Ca2+ perme-

ability and the absence of voltage-dependent behavior. Both NMDAR and AMPAR are

required for normal functioning of glutamaterg synapses.

PSD-95 is a member of the MAGUK (membrane-associated guanylate kinase) family and is

the most abundant scaffold protein in the postsynaptic density. It contains 3 PDZ domains as

well as SH3 and a GK domain, all of which mediate protein-protein interactions. The domains

PDZ1–2 and PDZ3-SH3-GK are considered to form two supramodules in which the confor-

mational changes occurring in one domain upon ligand binding affect the behavior of neigh-

boring domains [23, 24]. Among others, the GK domain can associate with the protein GKAP

and the PDZ domains can mediate interactions with membrane receptors (see below).

SynGAP is a Ras GTP-ase activating protein capable of interacting with PSD-95 with its C-

terminal segments [25]. It has specific activity towards the small GTPase Rap. It has a PH, C2

and a GAP domain as well as a coiled coil region mediating homotrimerization [26]. This fea-

ture was not explicitly included in our present models.

The GKAP (DLGAP1) protein is almost completely intrinsically disordered. It contains

multiple binding sites for the GK domain and DYNLL and has a helical GH1 domain near its

C-terminus. [27] Its C-terminal segment can interact with the PDZ domain of Shank3. In our

set of seven proteins, GKAP can be considered the link between the layer of the receptors,

potentially bound together by PSD-95, and the deeper scaffold proteins Shank3 and Homer1

that are capable of homooligomerization [28].

Shank3 is a member of the Shank (SH3 and multiple anykrin repeat domains protein) fam-

ily, containing an ankyrin repeat region, and SH3, a PDZ and a SAM domain, as well as a pro-

line-rich segment [29]. Shank3 is well known for its role in autism spectrum disorder, and its

overexpression is associated with ADHD and synaptic dysfunction [30, 31]. Its PDZ domain

can bind the C-terminus of GKAP and the Pro-rich region is recognized by the EVH1 domain

of Homer1 [32]. The SAM domain is capable of self-association [33].

Homer1 contains an N-terminal EVH1 domain and a long coiled-coil segment which

mediates homodimerization and also tetramerization of Homer1 molecules. The EVH1

domain can bind proline-rich segments on Shank proteins, metabotropic glutamate receptors

as well as IP3 and ryanodine receptors [34]. The Homer1a isoform lacks the coiled coil region

and plays a role in PSD reorganization during sleep [35].

These proteins span the entire PSD from the membrane receptors and establish connec-

tions with the cytoskeleton and the inner membrane system of the neurons.

Results

For the present study we chose a well-defined and well-described subset of PSD proteins (Fig 1

and Table A in S1 Table). The seven proteins in this network are the most abundant proteins

in the PSD and have well-characterized domain-domain interactions needed for our
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simulation. They also link the membrane receptors to the actin cytoskeleton, spanning all

layers of the PSD, and are also involved in phase separation phenomena [5, 6, 36].

To account for the effect of protein homomultimerization, we have performed simulations

with three different setups with regard to protein self-association: in the set designated

‘H4SM’, we have considered Homer1 tetramerization through its coiled coil region and

Shank3 polymerization via its SAM domain. In the ‘H4’ set we have only considered Homer1

tetramerization, and in the ‘Simple’ settings neither Homer1 tetramerization nor Shank3 self-

association was included. Below, unless explicitly noted otherwise, we report the results of the

H4SM set as the one with closest to our current understanding of the intracellular behavior of

these proteins.

To analyze the output of the simulations, we have assigned an ID to each resulting protein

complex (Fig 2). Note that here the simplest complexes are shown, i.e. complexes containing

the same proteins in the same ratio are treated as a single entity. In other words, in these com-

plexes, referred to as primary complexes below, the numbers of the different components do

not have a common divisor larger than 1. This property means that larger associations arising

Fig 1. The proteins and their interactions used in this study. The lines represent the interactions considered. The

red loop indicates self-association of Shank3 while the blue one refers to the tetramerization of Homer1.

https://doi.org/10.1371/journal.pcbi.1009758.g001
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for instance through Homer1 tetramerization and Shank3 multimerization of the same smaller

complexes are not considered separately here.

Abundance of the complexes formed in each simulation are shown in Fig 3. The list of each

brain region with IDs are in the Appendix Table A in S1 Table.

Protein complex distributions are highly sensitive to changes of protein

abundances

We have analyzed the diversity of input protein abundances and the resulting complexes. It

should be noted that in the input there are only seven kinds of proteins with relatively large

Fig 2. Protein composition of each complex (see text for details) observed in our simulations. The black vertical

lines indicate the complexes represented by even ID, the ID of them are shown while the complexes represented by

odd ID are indicated by white vertical lines—their IDs are not shown.

https://doi.org/10.1371/journal.pcbi.1009758.g002

Fig 3. Abundance of each complex obtained in the simulations for each brain region. (A) Input data: abundance of

proteins in each brain region. (B) Outputs: Abundance of the complexes. The three most frequent complexes are the

PSD-95/GKAP, AMPAR/PSD-95 and the PSD-95/SynGAP dimers.

https://doi.org/10.1371/journal.pcbi.1009758.g003
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copy numbers and in the output there are a high number of possible complexes but with much

lower copy numbers than the input constituent proteins, precluding direct comparison of

their diversity. Both the simulation inputs and outputs can be described by appropriate vectors

containing the protein (input) and complex (output) abundance data. We have independently

clustered both the input and output vectors and analyzed whether the obtained clusters repre-

sent the same sets of experiments. Surprisingly, the input and output clusters show only lim-

ited correspondence to each other (Fig 4), indicating that there is a non-trivial relationship

between protein abundance and complex occurrence. The difference between input and out-

put clusters was observed for different clustering setups (Fig A in S1 Text).

Besides the differences in the normalized distance matrices, we have calculated the differ-

ences between the inputs and outputs based on their first two principal components. The

cosine of the angle between the points shows exactly how the relative positions of the two

points have changed, not counting the distance. Comparing each region with each region, we

find that the heatmap of the distances and the heatmap of the cosines on show a similar pat-

tern. Where the change in distance is greater, the cosine is smaller. Nonetheless, there may be

nuanced differences due to the different sensitivities of the measures created. See Fig D in S1

Text. The dominant proteins in the first and second principal components are PSD-95 and

AMPAR, respectively.

The most dominant complexes are the binary complexes SynGAP1/PSD-95 (id:75) and

AMPAR/PSD-95. These observations resonate with the key role of PSD-95 in the synaptomic

theory [2].

Fig 4. Approaches to identify regions with different characteristics. (A) The difference between cross-region

distances. Where the difference is nonzero the outputs of the two regions got closer or farther to each other compared

to their distance based on the input data. This value indicates that our simulations provide important additional

insights into complex formation. The largest difference is observable at the brain region 238, (H376.IX.51_MFC).

There are remarkable differences in regions 340 (H376.VIII.51_STC) and 286 (H376.VI.50_V1C). (B). Cross-distances

of clusters based on the input and output data. The result of 4-means clustering is shown. For example, input cluster 0

is closest to output cluster 3, but the difference is 19 percent.

https://doi.org/10.1371/journal.pcbi.1009758.g004
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Principal component analysis [37] corroborated our assumption that regions move away

from each other meaning our simulations provide additional information not trivially deduc-

ible from the input abundance data. However, PCA results do not support that the same type

of brain regions such as the anterior medial prefrontal cortex would behave similarly during

the simulations. In some cases there are some regions of the same type getting closer, but this

case is not true in general and no clear trends can be observed (Fig 5). The Fig E in S1 Text

shows the distribution of the data from each brain region along PC1. The same qualitative pic-

ture can be observed when using all mRNA abundance data, showing that our observation

that PCA does not separate brain regions is not attributable to using only data on the seven

selected PSD proteins.

In order to complement the PCA results we also run an another dimension reduction

method called tSNE based on joint probabilities through input and output data. tSNE separates

the regions better but it is still not capable of meaningfully reproduce the regions (Fig 6).

To analyze this phenomenon in more detail, we compared the input and output vectors of

each individual experiment by generating two normalized distance matrices. One is based on

the input data and the other on the output complex abundance. To assess how the output com-

plex occurrence of a given experiment deviates from the expectations based on its input

Fig 5. Principal component analyses indicates no significant separation based on the type of brain regions. (A)

Brain Regions visualized by the input protein abundance data on the plane of the first two principal components. (B)

Brain regions visualized by the output protein complex occurrences on the plane of the first two principal components.

The first principal component is mainly affected by PSD-95, the second principal component is mainly affected by

AMPAR on the Input Field. The fraction of the variance covered by the first two principal components are 0.69 and

0.16, respectively. Both components are mainly affected by the complex PSD-95/GKAP (id: 10) on the Output Field.

The first two principal components cover 0.65 and 0.21 of the variance. The second most affecting complexes are the

PSD-95/SynGAP1 (id:17) for the first principal component and GKAP/Shank3 (id:4) for the second component. Not

all ITC and V1C-derived data series are spectacularly different from the others, however, one of the sets from both

brain regions is still further away in terms of input data. No significant separation is considered in terms of region

types—no similar coloured dots appeared separately from other colours. In the input data there is one outlier subject

where the abundance of PSD-95 was higher compared to other subjects in almost all brain regions.

https://doi.org/10.1371/journal.pcbi.1009758.g005
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protein abundance, we subtracted the two distance matrices and identified the largest differ-

ences (Fig 4).

We have selected the three experiments with the highest differences in their input and out-

put and discuss these in detail below.

Region 238: Anterior medial prefrontal cortex with high abundance of PSD-95. The

highest difference in the output relative to the input was observed for brain region 238 (H376.

IX.51_MFC), representing data from the anterior medial prefrontal cortex. In this region

PSD-95 makes up more than 75% of all proteins, which is unusual as it rarely exceeds 55%.

This huge ratio of PSD-95 is subject-specific. The subject H376.IX.51 has similar amount of

PSD-95 around 75% in its every region, but it is not disclosed in the data source whether there

is any neural disease diagnosed for this individual ([20]).

Considering the receptors, the abundance of AMPAR is much higher that that of NMDAR,

which is negligible. Shank3 is the second-most abundant protein while GKAP is in only pres-

ent in small amounts. The output complexes are dominated by PSD-95/GKAP,PSD-95/SYN-

GAP and AMPAR/PSD-95 binary interactions. Shank3 is mainly found in Shank3 dimers.

We have identified the two regions with inputs (protein abundance data) most similar to

region 238 and compared their respective outputs (complex distribution) with each other.

Although the inputs are highly similar (see Fig 7), remarkable differences can be observed in

the outputs, providing a clear example for the nontrivial relationships between protein and

complex occurrence and demonstrating added information of the applied simulations.

All three regions are from the same individual, one sample from the ventrolateral prefrontal

cortex (region 244) and another from the orbital frontal cortex (region 239). In these regions,

the abundances of Homer1 and SynGAP1 show the largest difference compared to region 238.

However, the most evident difference between the regions is in the presence of Shank3 dimers

Fig 6. Output of tSNE separates the regions better than PCA. (A) Brain Regions visualized by the input data

mapped on a plane by tSNE. (B) Brain regions visualized by the outputs mapped on a plane by tSNE.

https://doi.org/10.1371/journal.pcbi.1009758.g006
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which are absent from regions 244. Instead, Shank3 proteins participate in several larger com-

plexes or in the binary complex GKAP/Shank3. We can clearly see that a slightly less GKAP

does not result in higher Shank3 dimer ratios, indicating a nontrivial relationship between

input ptrotein abundance and complex formation in our simulations.

Regions 254 and 339: Different outputs from similar input abundances. Experiment

254, corresponding to the primary visual cortex (H376.IX.52_V1C) and 339 from the primary

sensory cortex (H376.VIII.51_S1C) exhibit the second and third largest all-against-all distance

differences between their input and output data vectors. Interestingly, these two sets have only

slightly different input protein abundances but are not the closest sets of each other in this

respect. The two inputs differ in the ratios of proteins SynGAP1, GKAP and AMPAR. The

main difference between the sets 254 and 339 lies in their PSD-95/GKAP and SynGAP1/PSD-

95 ratio as we can expect from the input differences. However, the SynGAP1/PSD-95/GKAP

ternary complex can be expected to emerge in both simulations but less SynGAP1 and more

GKAP does not lead to forming their ternary complex with PSD-95. In this case (experiment

254) higher ratio of the PSD-95(2)/GKAP precludes GKAP to join the SynGAP1/PSD-95

binary complex.

For both regions, we have identified the experiments with highest similarity in the input

abundances. For region 254 (see Fig 8, the complex distributions of the regions with most sim-

ilar protein abundances are also highly similar to each other. The numerically largest differ-

ences can be observed of complexes 10 (PSD-95/GKAP)and 17 (SynGAP1/PSD-95). In the pie

charts complex 1 (Shank3(2)) is seemingly missing from the other two regions and the ternary

complex 18 (SynGAP1/PSD-95/GKAP) occurs only in the region 254 but their abundance is

just below out threshold (2) for individual labeling.

Region 339 exhibits similar differences compared to its two closest regions in terms of pro-

tein abundance with also the largest differences in the abundance of complex 17 (SynGAP1/

Fig 7. Comparison of input protein and output complex abundances for region 238 and the two regions with

most similar input protein data. A, B and C: Input protein abundances in regions 238, 239 and 244, respectively. D, E

and F: output complex abundances of regions 238, 239 and 244. The pie charts show the fractions of input proteins /

output complexes. The complexes with abundances less than 2 are merged and shown as ‘other’. The charts

demonstrate that relatively small changes in input protein abundance ratios can lead to substantial redistribution of

complex fractions. Two of the complexes with the largest changes (Shank3 dimer, id 1; and Shank3/GKAP, id 4) do not

contain the most abundant protein PSD-95 and their emergence does not even seem to be trivially dependent on the

ratio of their constituent proteins.

https://doi.org/10.1371/journal.pcbi.1009758.g007
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PSD-95) and 10 (PSD-95/GKAP) while having the largest ratio (Fig 9). Here, although the

absolute abundance of complex 32 (AMPAR/PSD95) is highly similar (13, 14 and 17 com-

plexes in region 339, 328 and 340, respectively), its relative ratio within all complexes can be

different.

Effect on simulation time on the evolution of complexes

Our results are dominated by relatively small complexes of 2–4 proteins. However, the poten-

tial interactions between the molecules allow for the formation of much larger associations,

like complex 88 that contains four different kinds of proteins including seven copies of Shank3

Fig 8. Input protein and output complex abundances for experiment 254 and the two sets with most similar

inputs. A) Input protein abundances of region 254, B) input protein abundances of region 342, C) input protein

abundances of region 255, D) output complex abundances of region 254, E) output complex abundances of region 342,

F) output complex abundances of region 255.

https://doi.org/10.1371/journal.pcbi.1009758.g008

Fig 9. Input protein and output complex abundances for experiment 339 and the two sets with most similar

inputs. A) Input protein abundances of region 339, B) input protein abundances of region 328, C) input protein

abundances of region 340, D) output complex abundances of region 339, E) output complex abundances of region 328,

F) output complex abundances of region 340.

https://doi.org/10.1371/journal.pcbi.1009758.g009
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see Fig 2. To explore the potential evolution of smaller complexes to associate and form larger

ones, we have checked how large complexes evolve during the course of our simulations. We

note that due to the nature of the Gillespie algorithm implemented in Cytocast, simulation

time does not linearly scale with the number of steps. For each step, the algorithm calculates

how long it takes to complete the next reaction [38]. For this reason, the relationship between

simulation time and number of steps is not exactly linear, but shows noisier characteristics. As

a result, duplicated simulation time does not necessarily mean exactly duplicated number of

steps. We have analyzed our simulations at one-sixth and one-third of the full simulation time.

We found that the most abundant complexes are already formed at one-sixth of the simulation

time (t = 1/6). This observation indicates that the simulations reach an almost steady state

already in relatively early stages, thus, the observed output is largely robust with respect to sim-

ulation time. Nevertheless, both the maximum and average size of complexes generally

increases with time, indicating the presence of a slow association process leading to the emer-

gence of supercomplexes.

The supercomplexes formed are typically unique and are present in very low copy numbers,

usually 1. It seems still true that the number and distribution of the most abundant smaller

associations does not change significantly, although the proteins are in constant dynamic

interchange between the complexes. The weighted average of complex size remains in the

range of 2.7–2.8 irrespective of the simulation time, meaning that binary and ternary com-

plexes remain the most abundant.

Comparing the complex abundances of regions 238, 239 and 244 with the original simula-

tion time and t = 1/6 (of the original time) demonstrates that the percentages of the complexes

remain similar throughout the full simulation (Fig 7).

Principal component analysis of the outputs including the longer simulations for the three

selected regions (238,254,339) corroborates the above observation that simulation time has

negligible effect on the complex abundances, especially when compared to the changes

observed for variations in the input protein distributions.

Notwithstanding the fact that the most abundant complexes remain the same when run-

ning the simulations six times longer, the maximum size of appearing complexes differ. The

largest complex at t = 1/6 contained 11 proteins, the one at t = 1/2 had 8 and for the full simula-

tion, 12 proteins throughout every region. Meanwhile, the average complex size remained 2

proteins.

Longer simulation time does not change the occurrence of the most abundant complexes,

that are in fact much smaller than the large ones with very low abundance. The small, abun-

dant complexes can be regarded as building blocks for the larger ones formed via their associa-

tion. Thus, the simulation time affects the largest complexes in a way that the longer the

simulation, the more small complexes stack together into supercomplexes without changing

the dynamical equilibrium of the smaller blocks in the system.

Tracking the formation of large complexes is a nontrivial task as identification of the com-

plexes during assembly and disassembly can not be easily solved. Therefore, our current imple-

mentation does not contain such a feature that would allow such analysis. Nevertheless,

analysis of selected runs at a higher time resolution strongly suggests a scenario where a num-

ber of smaller complexes associate to form larger ones instead of each complex growing gradu-

ally by the addition of single components.

Effect of higher-order associations of Homer1 and Shank proteins

Our simulations were ran in three variants, the most realistic one termed H4SM—discussed so

far—considering Homer1 tetramerization via its C-terminal coiled coil region and Shank3
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multimerization through its SAM domain, H4 considering only the former and also a variant

where neither of these higher-order associations were included. Homer1 can form a dimer of

dimers, and in the Simple simulation only dimers were considered, still capable of forming

bivalent interactions via the EVH1 domain of each monomer.

In our H4SM simulations, the largest complex observed contains 12 proteins. Primary com-

plexes typically associate through Shank3 multimerization with the occasional involvement of

Homer1 tetramers. The supercomplex containing the most receptor molecules (2) observed

during our simulations is unexpectedly held together only by one GKAP molecule. Receptors

are not present in the largest complexes generated by Shank3 multimer chains.

Omission of Shank multimerization in our H4 simulations precludes the formation of very

large supercomplexes. The largest complex observed in the H4 simulations is shown in Fig 10.

This complex does not contain Homer1. There was no Homer1 tetramerization throughout

these simulations. Homer1 was observed in three different complexes, mostly in the Shank3/

Homer1(2). Since we consider every Homer1 molecule as a dimer, their low number means a

small probability for tetramerization. Several similar complexes were also observed with one

or two of the constituent proteins missing. In our Simple simulations, the relative abundances

of primary complexes was similar to those in the H4 and H4SM simulations (Fig 11) but no

large supercomplexes were formed. In general, Shank3 multimerization and and Homer1 tet-

ramerization increased the diversity of the obtained complexes predominantly via the associa-

tion of primary ones.

Fig 10. The structure of the largest complex created by Homer1 tetramerization. Homer1 is missing in the complex

due to small number of Homer1 dimers in the system.

https://doi.org/10.1371/journal.pcbi.1009758.g010
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Effect of variations in binding-unbinding rates

In the analysis throughout this paper, we used nominal binding—unbinding rates for each

reaction. We made this simplification as there is no data on measurements. Although equilib-

rium dissociation constants (kDs) of the simulated interactions can be measured in-vitro and

some (sometimes conflicting) data is available on these (Table L in S1 Table), but under in vivo
conditions most often the abundance of binding partners is the rate limiting factor [39, 40].

To test the effects of changes in binding-unbinding rates in our simulations, we ran simula-

tions with non-uniform binding values taken from the literature (Table L in S1 Table).

Although some of these rates differ from the originally used nominal values, the results of

these simulations show high similarity to the simulations with nominal binding rates (Fig F in

S1 Text). However, the altered unbinding values can affect the association rate of larger com-

plexes due to the lower unbinding probability some complexes that remain intact for a longer

time and thus can stick together with a higher probability.

This observation highlights that indeed the abundances of binding partners are key to

determine the abundances of their protein complexes, but the highly challenging measurement

of their in vivo binding kinetics might not be that crucial.

Discussion

Complex distributions and synaptic identity

The synaptomic theory, formulated by Seth Grant [2] proposes that the diversity of synapses

in terms of the protein complexes and supercomplexes is key in governing neural functions. In

this respect, investigations of the protein complexes and their relationship with protein abun-

dance is indispensable to get closer to the understanding this variability and its genetic

regulation.

The main observation in our simulations is that the distributions of the emerging com-

plexes are in an intricate relationship with the abundance of their constituent proteins. Because

of the many possible interactions, the availability of given proteins to form a certain complex

depends on all of their potential partners, providing considerable interdependence between

the abundance of different protein associations. While higher abundance of a partner protein

might mean higher chance of binding in simple cases, in other scenarios this abundance might

lead to the sequestration of the abundant partner into many different complexes depending on

Fig 11. Distribution of complexes obtained for the region 238 with setups without SAM domain-mediated Shank

multimerization. A) Simple setup (Homner dimers only, no tetramers) B) H4 setup (Homer tetramers allowed). The

main complexes remained the same as in the setup H4SM (with both Homer tetramerization and Shank

multimerizaton present).

https://doi.org/10.1371/journal.pcbi.1009758.g011
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the availability of its additional partners. This kind of interdependence can only be quantita-

tively assessed by simulations like those presented in our work. Our simulations show that

even small changes in protein distributions can lead to a remarkable redistribution of com-

plexes even in a simplified model of the PSD. Our observations reveal that protein abundance

alone can be a major organizer of PSD structure even when posttranslational modifications

and other factors potentially influencing the availability and of binding sites and the strengths

of interactions are not considered. The presented examples of regions with similar protein but

more divergent complex abundances suggest that local synthesis and degradation of selected

proteins can lead to the redistribution of protein complexes at a degree that can remarkably

change the ‘identity’ of a synapse. The presence of local mRNA translation in dendritic spines,

producing, among others, PSD proteins, is well established and has been associated with a

number of neuronal processes like late-phase LTP [41]. Also, similar complex distributions

might be achieved with different sets of the constituent proteins, providing the potential of

multiple ways of achieving functionally similar states. Our observation is that neither PCA nor

tSNE analysis shows clear grouping of data sets from the same brain region and/or individual.

This suggests that the variation observed can not be easily related to these aspects.

Protein supercomplexes, nanodomains and the organization of the PSD

Our simulations suggest that Homer1 tetramerization alone is not enough to make the forma-

tion of large supercomplexes possible, as these supercomplexes are only emerging when

Shank3 self-association is also introduced into the model. The observation that the abundance

of primary complexes do not exhibit large variations in the different settings suggests that the

organization of supercomplexes is hierarchical, they can be formed from and broken down

into smaller associations. The presence of several large supercomplexes is qualitatively compat-

ible with observations indicating the presence of functional “nanodomains” in the PSD [42,

43]. The dynamic reorganization of large complexes via the dissociation and association of

smaller associates is probably a key mechanism and is also in line with the observations point-

ing to changes in the composition and size of the PSD [44]. Our observation that the average

and maximum size of the complexes incrseases with simulation time indicates that technically

we might reach an equilibrium over a very long simulation time. However, the information

content of such a steady state might be low because if the majority of the proteins are found in

only a few very large associations, the diversity of the complexes would be low and as such

large complexes would be unique making comparisons between simulations difficult. In the

extreme case all the proteins might form a single supercomplex which is both unrealistic and

uninformative as the complex composition would eventually reproduce the input abundances.

Such a scenario might be prevented by introducing more realistic association-dissociation

constants and/or protein turnover into the simulations. Our calculations are robust, the com-

plex distributions do not show large fluctuations during the course of the simulations, rather

adopt a quasi-equilibrium relatively quickly. If the simulation outputs were largely dependent

on stochastic fluctuations, then repeated calculations would also show large random diver-

gence, which is not observed. In contrast, the sensitivity of the results to specific alterations of

the input abundances is well reproduced. Notably, small variations in the input abundances

cause deviations in the output complex distributions in only a number of well-defined cases.

Models of PSD complexes—How far are we from reality?

Protein copy numbers estimated from linear scaling of mRNA expression data do not take

into account translational and posttranslational regulatory effects. Such effects may result in

greater variance of complexes between brain regions. Ideally, direct protein abundance data
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would be needed to get more realistic simulation results. Imaging techniques are available to

get closer information about protein abundances. These imaging techniques show similar pro-

portions to the mRNA data as validation but the dimensions are not exact protein numbers

but voxels and intensities [45], and such data are much more sparsely available than mRNA

expression data. The detailed description of PSD organization is still a challenge. It is compli-

cated by its size, the number and variations of constituent proteins and, most of all, its variable

stoichiometry and dynamics. Although high-resolution experimental data on binary com-

plexes are available, these typically only contain the interacting domains and segments. The

full PSD can be isolated but from it only the abundance of the constituent proteins can be esti-

mated by mass spectrometry [46]. To our best knowledge, even in vitro reconstructions of

PSD complexes do not provide information at the level that could be directly comparable to

the results of our simulations [5].

Our premise is that simulations can complement experimental data and can meaningfully

contribute to our understanding of the nature of the PSD. The modeling approach presented

here is a first-approximation one focusing on the variability of protein abundances and only a

highly simplified set of seven PSD proteins and only a single variant of each. Thus, its complex-

ity is far from the actual organization of the PSD. Consequently, our results might not have

direct relevance to the actual distribution of complexes in the PSD in different neurons. The

ideal case would be to simulate the entire PSD (or a significant portion of it) using experimen-

tally determined binding and unbinding rates. Currently, we are very far from this scenario

and these two aspects mutually exclude each other. Even for the 7-protein system investigated

there are very few kon and koff rates, only Kd values have been determined and even these vary

between different experiments performed by various research groups. Expanding the protein

set would mean using many more unknown binding rates. Availability of a larger amount of

quantitative experimental data, especially on complexes, would also make it possible to per-

form detailed studies related to model identification in terms or protein-complex abundance

relationships similar to the one described in [47]. Alteration of the binding and unbinding

rates can show how the results are dependent on the altered rates. More precise simulations

would require quantitative data on abundances directly at the protein level, appropriate bind-

ing constants and the consideration of the 3D organization of the complexes together with

their localization within the postsynaptic region. In addition, dynamic turnover of the compo-

nents, the spatial direction of the addition of new proteins as well as the phenomenon of phase

separation are all issues that are expected to contribute to the actual distribution of the com-

plexes in vivo. We believe that in the future simulations, following the proposed method, will

be able to provide information for experimental design to test the abundance of specific large

complexes or interactions, making use of the continuously developing molecular imaging

techniques.

Materials and methods

Data sets

Data described in [12] has been processed by an in-house Python script. The source data was

stored in three CSV files where one contained the protein abundance data in a matrix while

the other two contained the information of the columns and rows.

The data set contained RNA-Seq RPKM (reads per kilobase per million) values averaged to

genes. From these values protein abundance data were generated as below:

1. The median RNA-Seq value of the PSD-95 were calculated.

2. This value (66.82 rpkm) were assigned to the protein abundance 300 [48]
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3. RNA-Seq values were multiplied by 300/66.82—assuming linear relationship based on [49]

The model is suitable for making a primary estimate. Approximating the protein abun-

dances by mRNA expression shows interregional separation at the level of mRNA synthesis,

while other separations could emerge during the translation of the proteins. In the case of

actual protein abundance data, the procedure can be repeated in the same way without

changes. The distribution of the data is not uniform in the sense that there are brain regions

for which data are not available from all of the patients. Because of this we handled all experi-

ments separately and aimed at identifying the major differences between the results.

Simulations of complex formation

Cytocast implements a version of the Gillespie algorithm, which is a Monte Carlo based

method to simulate every reaction in order to have a non-deterministic approach of abun-

dance change of molecules or in our case complexes.

Steps of Gillespie-algorithm [50]:

1. Set the initial conditions as the number of starting molecules (here protein abundance) ni,0
and possible reaction numbers q

2. Generating two random variables between 0 and 1. (r1, r2)

3. Compute the propensity functions of each reaction (here binding, note if a binding occurs

there is one less protein).

aiðtÞ ¼ ðni;t� 1 � 1Þki ð1Þ

4. Compute the propensity function for the whole system:

a0 ¼
Xq

j¼1

ajðtÞ ð2Þ

5. Compute the time when the next chemical reaction takes place as t + τ where

t ¼
1

a0

ln
1

r1

� �

ð3Þ

6. Calculate which reaction occurs then adjust the numbers of the proteins (one less protein

from the inputs and one more for the output (complex)). The ith reaction occurs if the con-

ditions are true:

1

a0

Xi� 1

j¼0

aj � r2 <
1

a0

Xi

j¼0

aj ð4Þ

The equilibrium dissociation constant (KD) is the ratio of unbinding (koff) to binding rate

(kon).

Cytocast is a Gillespie-based stochastic modeling software of agent-based protein-binding

in a virtual cell where the proteins are point like. The software gives a quantitative prediction

on complex abundances with certain initial conditions. These conditions are the simulation

time, compartments’ size and shape, protein abundances, diffusion rates, protein functions

and bindings. The software was based on the publicly available SiCompre [19].

As it is unrealistic to have binding and unbinding rates for all possible reactions in the sys-

tem, we set these rates uniformly to 1 a.u. (binding = 1 a.u., unbinding = 1 a.u.). Although the
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ratio of the rates affects the size of the emerging complexes, our intention is to investigate the

effect of varying protein abundances, which in this case will be the main determinant of the

results. Previous works have shown that this simplification can lead to biologically relevant

results [14, 19].

The compartment used for the simulations

The compartment was set up in 3 dimensions and had a spherical shape in order to approach

the shape of a general dendrite. The sphere contained 1024 subvolumes. This shape and size

gives enough space for the proteins to diffuse but small enough to observe sufficient number

of interactions.

Online tool for simulations

The online tool (http://psdcomplexsim.cytocast.com/) calculates protein complexes of the

seven major postsynaptic proteins (two membrane receptors, NMDAR and AMPAR, as well

as five scaffold proteins) as a function of their individual abundances. The abundance of the

constituent proteins can be set to any desired value using the form. By default, Homer proteins

are modeled as dimers and Shank polymerization (via its SAM domain) is not considered, you

can change these settings by ticking the appropriate boxes. The default length of the simulation

run with this service is 1 AU. The output contains all the protein complexes formed from the

user set abundances of each proteins. The tool allows the reproduction of the results described

in the present paper and enables users to test any combination of protein abundances.

Analysis of the simulations

Dimension reduction methods. Two main dimension reduction were used analyzing the

data. Principal Component Analyses is based on the eigenvectors and eigenvalues of the data-

set. The calculated eigenvectors are the principal components and their corresponding eigen-

values show the contribution of those vectors to the variance of the dataset. During the analy-

ses we transform the original coordinates into the base of eigenvectors. The coordinates of the

eigenvectors are related to the weight of the original axes in the given eigenvector.

For input data seven dimensions should be reduced:

v ¼ a1p1 þ a2p2 þ � � � þ a7p7 ¼ a1s1 þ a2s2 þ � � � þ a7s7|fflfflfflfflfflffl{zfflfflfflfflfflffl}
axis not shown

ð5Þ

In the Eq 5 a data set is represented by the input protein abundances. The ai is the abun-

dance of the protein pi. The pi is the axes representing the protein i. On the other side of the

equation there are the new coordinates of the data set αi where si is the eigenvector i. The first

eigenvector represents the largest contribution (eigenvalue) and the last one has the lowest

impact. The calculations were made by scikit-learn [37].

Another dimension reduction method is the t-distributed Stochastic Neighbor Embedding

(tSNE), which is based mainly on joint probabilities created by the dataset. tSNE converts

Eucledian distances into Gaussian probabilities where the probability is high if the two points

are close.

PðvjjviÞ ¼
e
� jjvi � vj jj

2

2s2
i

P
k6¼ie

� jjvi � vk jj
2

2s2
i

ð6Þ
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Calculating the joint probabilities:

Pðvi; vjÞ ¼
PðvijvjÞ þ PðvjjviÞ

2n
ð7Þ

For low-dimensional spaces, a Student-t distribution is calculated. Using the two probabili-

ties an error function can be defined which is then minimized by an optimization approach

[51]. We used the scikit-learn for running the algorithm.

K-means clustering of one-hot labeled regions. The K-means clustering is one of the

simplest algorithms for creating similarity classes so called clusters based on closeness in a

parameter space. The number of clusters is a key parameter as the same difference can be

seemingly larger when a higher number of clusters is used. In this study we have performed K-

means clusterings for K = 2,3,4,5 and 6 (see Fig A in S1 Text).

The optimal cluster numbers were chosen by visualizing silhouette scores of clustered data

both on input field (Fig B in S1 Text) and on output field (Fig C in S1 Text) for each K.

Clusters were formed both from the input and output data. The inputs were considered vec-

tors in a seven dimensional vectorspace R7. Each dimension was assigned by a protein abun-

dance. The outputs were represented as a six dimensional one R6 where each dimension

describes the abundance of a selected interaction.

The algorithm in short (Python packages and MatLab have their own implementations)

[52]:

1. Randomize the k mean points.

2. Each data point n is assigned to the nearest mean.

3. Calculate the new mean of the clusters by the assigned data points.

4. Reassign each data point to the new nearest mean.

5. Repeat step 3 and 4 until every mean point remains unchanged.

Then we generated a one-hot labeled vector for each cluster. The coordinates of the vector

represent each dataset, and the coordinate is 0 if the dataset is not in the cluster and one if the

data is in the cluster.

c 2 f0; 1gNumber of Data Points ð8Þ

ci ¼
1 if datai 2 Cluster

0 if datai =2 Cluster

(

ð9Þ

Then the distance of two clusters can be formalized as:

dðu; vÞ ¼
PN

i¼1
jui � vij
N

ð10Þ

Where u,v are cluster vectors and N is the number of datapoints (dimension of the cluster

vectorspace). This is a conservative measure in the sense that points that are not included in

any of the two clusters are also considered to be similar. For this reason, even smaller values

represent a larger difference compared to considering only the union of the two clusters.

High inter-cluster distances indicate that the input and the output data are in a nontrivial

relationship.
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Differences between region-to-region similarities based on protein and complex abun-

dances. The brain regions were associated by a point in a multidimensional space, one space

for the input data and another space for the output data. For the input data the axis were the

protein abundances while in the output data the axis were the occurred complexes. Eucledian

distances between each brain regions were calculated in the input data and in the output data

as well. Then those distances were normalised between zero and one to eliminate artefacts

caused by the different vector spaces before checking how a distance changed. The two dis-

tance matrices were then subtracted to identify the largest changes in region-to-region similar-

ities based on protein and complex abundances.

Visualization of protein complex distributions. The real question of simulations, how-

ever, is what complexes appear in a given simulation and in what quantities. It is difficult to

compare two simulations based only by the specific numbers of complexes, since our starting

materials the proteins, are also present in less or more amounts. Thus, for the comparison, the

relative abundances of the complexes were taken into account. The pie charts show that a

given complex occurs at what percentage of the whole complexes. The complexes with the

smallest percentages were put together in the other group by a threshold of amount. Thus,the

complexes which were the most common according to the simulation in the given brain region

can be determined. The complex IDs are generated for one simulation set containing all the

regions to be compared. Therefore, when comparing different metaparameters on same

regions, the complex IDs emerged have to be associated with the original IDs of the same com-

plex, in the charts the colors are also associated with the original IDs.

Supporting information

S1 Text. Fig A. Analysis of the relationship between the input and output data based on

cluster distances obtained for different cluster numbers generated by K-means clustering.

Fig B. Silhouette scores of kMeans algorithm on input data. The red line indicates the aver-

age score. Higher scores indicate more reliable clustering. Each cluster is colored differently.

Although the average score is highest at k = 2 for the output complexes, the smaller cluster is

virtually non-existent at this value. Thus, practically the the k = 3 and k = 4 cases can be used

for informative comparisons. Fig C. Silhouette scores of kMeans algorithm on output data.

Fig D. Correlations of Relative Positions of PCA points. The heatmap shows how much the

direction of the relative positions between each brain region differs from input positions to

output positions regarding to their first two principal components. The value is absolute. It is

illustrated at the bottom of the figure that the cosine of the intervening angle of the positions

was taken. X is a reference point in the input and output field of while the A is an another

point in the input field and A’ is the same region as A just in the output field. Fig E. The distri-

bution of data for each brain region along first principal component. Fig F. Distribution of

complexes obtained for the three main regions with setup of non-uniform binding values

and the two closest—in case of input protein abundances—regions for each (similarly to

the main figures): A,D) H376.IX.51_MFC G,J) H376.VI.50_V1C M,P) H376.VIII.51_S1C.

Similar to the region H376.IX.51_MFC are the regions: B,E: 239 and C,F:244. Similar to the

region H376.VI.50_V1C are the regions: H,K:342 and I,L:255. Similar to the region H376.

VIII.51_S1C are the regions: N,Q:328 and O,R:340. The regions with similar protein abun-

dances (lines) remained similar however small perturbations still caused small changes as we

observed originally. Changes between the uniform and non-uniform unbinding values makes

differences between the complex abundances. The most abundant complexes remain the most

abundant but the ratio changed and the less abundant complexes changed indicating that non-

uniform binding rates affect more the time a bigger complex needs to evolve.For example on
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subfigure B there is the complex GKAP/Shank3 while on subfigure E for non-uniform unbind-

ing values instead of the binary complex GKAP/Shank3 there is the quaternary complex of

PSD-95(2)/GKAP/Shank3. This change is caused by the smaller (kD = 0.02μM) unbinding

value of GKAP-Shank3 binding. Similar phenomenon can be observed at the subfigures M-P

and N-Q where the PSD-95/GKAP/Shank3 and PSD-95(2)/GKAP/Shank3 complexes

emerged due to the smaller unbinding value of PSD-95-GKAP binding.
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Visualization: Marcell Miski.

Writing – original draft: Marcell Miski.

Writing – review & editing: Marcell Miski, Bence Márk Keömley-Horváth, Dorina Rákóczi
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